A uniformly convergent series for Sturm-Liouville eigenvalues
نویسندگان
چکیده
منابع مشابه
Extremal Eigenvalues for a Sturm-Liouville Problem
We consider the fourth order boundary value problem (ry′′)′′+(py′)′+ qy = λwy, y(a) = y′(a) = y(b) = y′(b) = 0, which is used in a variety of physical models. For such models, the extremal values of the smallest eigenvalue help answer certain optimization problems, such as maximizing the fundamental frequency of a vibrating elastic system or finding the tallest column that will not buckle under...
متن کاملMultiplicity of Sturm-liouville Eigenvalues
The geometric multiplicity of each eigenvalue of a self-adjoint Sturm-Liouville problem is equal to its algebraic multiplicity. This is true for regular problems and for singular problems with limit-circle endpoints, including the case when the leading coefficient changes sign.
متن کاملEigenvalues of fourth order Sturm-Liouville problems using Fliess series
We shall extend our previous results (Chanane, 1998) on the computation of eigenvalues of second order SturmLiouville problems to fourth order ones. The approach is based on iterated integrals and Fliess series. @ 1998 Elsevier Science B.V. All rights reserved. AMS classification: 34L15; 35C10
متن کاملDependence of eigenvalues of Sturm-Liouville problems
The eigenvalues of Sturm-Liouville (SL) problems depend not only continuously but smoothly on boundary points. The derivative of the nth eigenvalue as a function of an endpoint satisfies a first order differential equation. This for arbitrary (separated or coupled) self-adjoint regular boundary conditions. In addition, as the length of the interval shrinks to zero all higher eigenvalues march o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1984
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/757175